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Characterization of structural reorganization in rice piles

K. I. Hopcraft, E. Jakeman, and R. M. J. Tanner
Theoretical Mechanics Division, School of Mathematical Sciences, University of Nottingham, University Park,

Nottingham, NG7 2RD, United Kingdom
~Received 8 February 2001; published 19 June 2001!

Diagnostics applied to a rice-pile cellular automaton reveal different mechanisms producing power-law
behaviors of statistical attributes of grains which are germane to self organised critical phenomena. The
probability distributions for these quantities can be derived from two distinct random walk models that account
for correlated clustered behavior through incorporating fluctuations in the number of steps in the walk. The first
model describes the distribution for a spatial quantity, the resultant flight length of grains. This has a power-law
tail caused by grains moving through a discrete, power-law distributed number of random steps of finite length.
Developing this model into a random walk obtains distributions for the resultant flight length with character-
istics similar to Lévy distributions. The second random walk model is devised to explain a temporal quantity,
the distribution of ‘‘trapping’’ or ‘‘residence’’ times of grains at single locations in the pile. Diagnostics reveal
that the trapping time can be constructed as a sum of ‘‘subtrapping times,’’ which are described by a Le´vy
distribution where the number of terms in the sum is a discrete random variable accurately described by a
negative binomial distribution. The infinitely divisible, two-parameter, limit distribution for the resultant of
such a random walk is discussed, and describes a dual-scale power-law behavior if the number fluctuations are
strongly clustered. The form for the distribution of transit times of grains results as a corollary.

DOI: 10.1103/PhysRevE.64.016116 PACS number~s!: 02.50.2r, 89.75.Da, 05.65.1b
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I. INTRODUCTION

Interest in self organized criticality~SOC! is multidisci-
plinary, and continues to burgeon~see, e.g., Ref.@1#!. The
concept of SOC refers to the spontaneous emergence of
plexity in nonequilibrium systems that are nevertheless
namically simple. Particular attention has been paid to
statistical mechanics of granular media and, as a co
quence, the ‘‘sandpile’’ has become the touchstone of S
When a pile of sand is fueled by the addition of grains
evolves into a state where, on average, the quantity of ma
expelled from the pile is equal to the amount added to
This dynamic equilibrium is maintained by an intermitte
cascade of material down the pile through avalanches
exist on all scale sizes up to the dimensions of the syst
This sandpile paradigm has prompted workers to charac
ize complex systems through a simplified dynamics wh
fueling is followed by reorganization once a local critic
threshold is exceeded. The reorganization can lead to in
bility at other sites, and consequently can establish lo
scale correlated behavior throughout the pile. The statist
description of the scale-invariant behavior that is obtaine
typified by distributions possessing power-law tails, and
seeking a model for this, interest in the class of ‘‘stable’’
‘‘Lé vy’’ distributions @2# has been rekindled.

SOC behavior was demonstrated experimentally in
celebrated ‘‘Oslo rice pile’’@3#, and its detailed dynamic
was elucidated by investigating the motion of tracer grai
The distribution for the transit times of grains through ri
piles of variable size exhibited, on the longest scales, a
caying power law extending over approximately two d
cades. The data show a second region of power-law beha
an the shortest time scales for smaller sized rice piles,
though the authors did not comment upon this. A cellu
automaton that purported to model this rice pile@4# also
1063-651X/2001/64~1!/016116~10!/$20.00 64 0161
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exhibited a dual power law at short and long scales for
distribution describing the trapping time of grains, but aga
the authors confined their attention and discussion to the
of the distribution, modeling it with Le´vy statistics. A dual
power-law behavior cannot be described using Le´vy statis-
tics, which can only characterize the power law featured
the largest scales. One aim of this paper is to deconstruc
temporal behavior produced by the cellular automaton,
describe it in terms of a random walk model which has, a
key ingredient, fluctuations in the number of steps formi
the walk, as in Ref.@5#. This is motivated by the well known
technique@6# by which correlation may be introduced into
random walk through fluctuations in the number of ste
meaning that successive realisations of the walk contain
ferent numbers of stepsindependent of the properties of th
step lengths. This allows a sequence of events to be cluste
~correlated! in time, for example, although their individua
contribution to the quantity of interest are unrelated to
clustering process. A consequence of this is that the d
power-law behavior for trapping times occurs naturally an
moreover, predicts the observed form for the distribution
transit times. It was also shown in Ref.@4# that the distribu-
tion of flight lengths of grains could be modeled using Le´vy
statistics. This raises the paradox that a spatial trans
quantity can have arbitrarily large excursions, which app
ently conflicts with constraints imposed by the energetics
the system. Another aim of this paper is to resolve this pa
dox by showing that a grain’s flight is comprised of a flu
tuating number of ‘‘subflights’’ of finite length, where th
number of subflights is described by a discrete power la
This notion leads to flight lengths possessing the attribute
a Lévy distribution without the attendant problem of un
physical energetics.

Cellular automata provide an important tool for the inve
tigation of the dynamics of sand piles. Based on a few
©2001 The American Physical Society16-1
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ementary rules, they have enabled a prediction of ma
scopic behaviors that can and have been observed in
systems, and advanced the knowledge of the microsc
dynamics involved. However, the choice of model has
been related closely to the properties of any individual s
tem, since the objectives have, to date, been principally
illuminate the generic processes leading to SOC and t
overall outcome. To make quantitative predictions of a pr
tical nature, it is important to understand in greater de
how the microscopic reorganizations of the system are
lated to the assumed numerical model. This would enab
more realistic modeling of both naturally occurring and sy
thesized phenomena to be achieved in the future. As a
sponse to this, this paper presents a detailed statistical a
sis of the internal reorganizations of a sand pile predicted
an established cellular automaton. This provides further
sight into the relevance of random walk models to the s
ject, and emphasizes the importance of discrete number
tuations as a descriptor and motor for the dynamics.

This paper first reviews the cellular automaton used
describe the rice-pile experiment, describing in particular
physical structure of the pile in the self-organized state
how this structure influences the various behaviors of tra
grains transported through the pile. Section III concentra
on a spatial property, the distribution of flight lengths, a
illustrates how these can be deduced from a random w
model where the number of steps in the walk fluctuates w
a discrete power-law distribution. Section IV focuses on te
poral properties, and presents evidence that the trapping
distribution can also be understood using a random w
model, but where now the individual steps in the walk a
Lévy distributed time increments and the number of step
a negative binomial random variate. This distribution is th
used to derive the observed form of the transit time distri
tion of tracer grains. Section V summarizes and discusses
implications of this work. Technical details pertaining to t
derivations and forms of the distributions are assigned
appendixes.

II. RICE-PILE CELLULAR AUTOMATON

The cellular automaton studied in Ref.@4# was designed
to replicate experimental data of the Oslo rice pile repor
in Ref. @3#, and has the advantage of being able to track
apply diagnostics to test particles as they move through
the pile. The automaton therefore enables microscopic p
erties of particles and macroscopic attributes of the en
pile to be studied simultaneously.

The cellular automaton examines the stability of a set
slopeszm in excess of an angle of repose, where 1,m,L
labels a spatial position within the pile. If the slope attain
critical gradientzm

c at sitem, ‘‘sand’’ is redistributed in such
a way that the gradient is reduced to a subcritical value th
and raised at nearest neighbor sites according to the rulzm

>zm
c ⇒zm21→zm2111, zm→zm22, zm11→zm1111. The

critical gradient at a site is a Bernoulli random variable th
fluctuates between 1 and 2 with equal probability, being
assigned whenever a grain passes over that site. Special
ditions apply at the end of the pile, where the rule is modifi
01611
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so that ifzL>zL
c , zL21→zL2111, zL→zL21. The redistri-

bution of grains at unstable sites occurs sequentially, co
ing from the left to the right of the pile, in accordance wi
causality. Iteration throughout the pile continues until it a
tains a state withzm,zm

c everywhere. The pile is then fuele
at the top, so thatz1→z111, and the process continues. Th
toppling rule of the automaton used here differs slightly fro
that used in Ref.@4#, where the condition waszm.zm

c , which
necessarily has fewer toppling events and results in
‘‘steeper’’ pile. This alteration does not affect the statistic
properties of the tracer grains, but has the advantage of b
more efficient computationally, and therefore allows mo
sophisticated diagnostics to be applied. The simplicity of
algorithm belies the complexity of behavior it describes.

Two diagnostics were used in Ref.@4# to characterize be-
havior: the ‘‘flight length’’ and ‘‘trapping-time’’ distribu-
tions of grains. To understand how the empirical resu
quoted in Ref.@4# arise and become quantifiable in terms
two distinct but simple stochastic models, diagnostics h
to be applied to the cellular automaton that elucidate
statistical mechanics of the ensemble of grains. The way
these diagnostics inform the construction of these mode
best appreciated by describing some aspects of the cel
automatons behavior.

A pile in the self-organized state forms a sequence
‘‘staircases’’ interspersed with ‘‘plateaus’’ and, less fr
quently, ‘‘holes.’’ These elements are illustrated in Fig.
The algorithm predicts that a stable SOC pile has an ave
slope;3/4, and so;75% of the piles’ surfaces compris
sections of staircase,;25% plateaus, with holes occurrin
with a frequency,1%. The distance between consecuti
plateaus is approximately exponentially distributed, with
mean interplateau spacingD l;4 grain sites, and most pla
teaus have a length of two sites. Thus a stable pile of t
length 400 has about 100 plateaus randomly distribu
through it. The algorithm proceeds by the addition of a gr
to the first site of such a pile. The stability of this site
tested and, if unstable, the grain moves to the next site,
so on, until coming to rest. Grains must necessarily mo
down a staircase section, and so the principal location
which a grain can come to rest is a plateau. Such a pote
resting site has a random preassigned critical slope ass
ated with it. If this is 1, the grain continues to the next p
tential resting site on the same or at the next plateau. If
critical slope is 2, the grain ‘‘sticks.’’ In those rare instanc
when a grain falls into a hole, it sticks with probability 1 an
forms a new plateau. Holes rapidly fill, accounting for the
infrequent occurrences. Because the critical slope is eith
or 2 with equal probability, a grain has an average subfli
length of two interplateau distances, or approximately eig

FIG. 1. The essential elements from which a sand pile is co
prised, together with the frequency of occurrence.
6-2
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grain sites before it comes to rest at a plateau. All the s
over which this grain has passed~staircases and plateau
alike! are ‘‘perturbed’’ by randomly reassigning their critic
slopes. Hence the potential exists for one of these s
which was initially stable, to be transformed to an unsta
site~and vice versa!. An unstable site will shed a grain, cau
ing another subflight to ensue and continue the ‘‘avalanch
The order in which the stability of sites is tested alwa
increases away from the top, effectively running down
surface of the pile. Hence there is an ‘‘active zone’’ defini
the spatial extent between where grains commence and
minate their subflights: it denotes the location of the a
lanche at any instant, and is purely a surface feature. W
each grain’s subflight, the active zone fluctuates in posit
within the pile and in length, the latter necessarily evolvi
to zero as the pile returns to a state of global stability. I
the position of the rear of the active zone~i.e., closest to the
top of the pile! that determines whether a tracer grain has
opportunity for another subflight. The next time that the re
of the active zone passes over such a grain at the surfac
the pile, it has the opportunity to move on another subflig

One aspect to note is that the algorithm contains dispa
time scales. The ‘‘long’’ time scale characterizes the fuel
of grains which occurs between the pile being in two co
secutive stable states. The ‘‘short’’ time scale character
the redistribution of all those grains that move between fu
ing events, and therefore fluctuates between successive
tion of grains in accordance with the size of avalanche tha
produced. Despite this, the avalanche is considered to o
instantaneously on the long time scale.

III. DISTRIBUTION OF FLIGHT LENGTHS

Section II described an active zone, which denotes
location and spatial extent of the avalanche and occurs on
short time scale. The feature of this structure that dicta
whether or not an avalanche persists is the location of
rear of the active zonema ; as this moves over tracer grain
its action provides them with the opportunity to move off
the next place of residence. Figure 2 shows the probab
distribution forma for a pile of lengthL51000. The distri-
bution is a power law over three decades with index20.8.
The feature appearing at small values ofma is due to special
conditions that prevail near the fueling point, and the cut
at largest scales is due to the finite length of the system. T
very shallow power law implies that the active zone has
mean location. Therefore, it can move anywhere over
entire pile, triggering grains to move as it does so. Inde
this must be so, for a tracer grain would hardly ever
expelled from the pile unless the active zone could expl
every part of it. Thus a property of individual grains is infl
enced by a macroscopic structure of the pile. A grain has
opportunity to move many times within an avalanche asma
moves back and forth. Moreover, this spatial movem
causes the excavation of interred tracer grains which af
the temporal behavior of the pile, as will be explored in S
IV.

Figure 3 shows the probability distribution forNs , the
number of subflights of lengthl i that cause a total avalanch
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flight of lengthl for a pile of size 400 sites. The flight lengt
l 5( i 51

Ns l i is the total distance traveled by a grain betwe
fueling events, and fluctuates withNs and l i . The distribu-
tion shown is for tracer grains emanating from site 2 of t
pile, principally because these have the potential for
longest flights. This discrete distribution is a power law
index 22.14. The cutoff atNs;100 is due to the finite size
of the pile. The reasons for the discrepancy between the
dices of the power laws forNs andma are complex. A grain
does not necessarily move on another subflight whenma
passes over it; rather it has theopportunity to move. For
example, the critical slope may have been reassigned to
2, or the grain may be buried below the surface, in wh
case the grain will not or cannot move. Moreover the dis
bution for Ns is constructed as an ensemble average ove

FIG. 2. The probability density for the location for the rear
the active zonema for a pile of lengthL51000. The distribution is
a power law with index20.8, and is normalizable only by virtue o
an end effect. The distribution forma has the same power law fo
smaller pile lengths.

FIG. 3. The distribution for the number of subflightsNs for a
pile of length L5400, which is a power law with indexb
522.14.
6-3
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K. I. HOPCRAFT, E. JAKEMAN, AND R. M. J. TANNER PHYSICAL REVIEW E64 016116
realizations of resultant flight lengthsl. There are many com
binations of subflightsl i comprising a given resultant flightl,
and the probability for occurrence for these individual re
izations would require enumeration if a match were soug
For the purpose of this paper it is sufficient to note that
underlying reason for the power law inNs derives from the
power law for ma . It will now be shown how the above
empirical observation that a tracer particle receives a pow
law distributed number of ‘‘kicks’’ is used to obtain the di
tribution for l which matches the cellular automaton data
will be shown that the resultant of the random walk is als
power law distribution with the same exponent as the nu
ber fluctuations.

In Sec. II the motion of grains was described as bein
series of ‘‘jumps’’ or subflights which have an avera
length of eight sites, being two interplateau lengths. The
tual distribution of interplateau lengths matters little to wh
follows, and can be taken as constant. The subflights
then be considered as integer multiples of a fixed interplat
length D l , so thatl n5nD l . Suppose that the probability o
traversing any possible resting site is 1/m, wherem.1. For
the cellular automaton,m52, because the critical slope a
the site of rest adopts one of two values. The probability
the grain travelling overn21 independent potential restin
sites before remaining at thenth site is therefore
(1/m)n21(121/m). Hence the generating function for ob
taining a subflight of lengthl n is

q~s!5^exp~2sln!&5~m21! (
n51

` S 1

m D n

exp~2nsD l !

5
m21

m exp~sD l !21
.

The form of the generating function nears50 determines
the large-scale asymptotic behavior, i.e.,

q~s!;
1

11msD l /~m21!
,

which is the generating function of the exponential distrib
tion. A random walk comprisingNs such independent sub
flights has a resultant

l 5 (
n51

Ns

l n , ~1!

with a generating functionqN(s)5q(s)N, and this generate
the gamma distribution

pNs
~ l !5S ~m21!l

mD l D Ns21 ~m21!

mD lG~Ns!
expS 2

~m21!l

mD l D ,

all moments of which exist. The model adopted for the nu
ber fluctuations that is consistent with Fig. 3 is taken to b

P~Ns!5
1

z~b!Ns
b , Ns>1, b.1 ~2!
01611
-
t.
e

r-

t
a
-

a

c-
t
n
u

f

-

-

where the Riemann zeta functionz(b) @7# provides normal-
ization. In approximating the rice pile behavior, it is assum
that the number of steps is independent of the length of e
step. The distribution for the resultant flight lengthl that
results from averaging over all realizations ofNs is

p~ l !5 (
Ns51

`

P~Ns!pNs
~ l !

5
~m21!exp@2~m21!l /mD l #

mD l z~b!

3 (
N50

` S ~m21!l

mD l D Ns 1

Ns! ~11Ns!
b .

Settingx5(m21)l /mD l obtains

p~x!5
exp~2x!

z~b! (
Ns50

`
xNs

Ns! ~11Ns!
b

. ~3!

An alternative expression for this probability density fun
tions ~PDF! can be obtained on using the definition of th
gamma function@7#, to write

~11Ns!
2b5

1

G~b!
E

0

`

duub21 exp@2~11Ns!u#,

whereupon the summation can be evaluated to obtain
equivalent integral representation for the PDF@Eq. ~3!#:

p~x!5
exp~2x!

z~b!G~b!
E

0

`

duub21 exp~2u!exp@x exp~2u!#.

~4!

This distribution, expressed either in the form of Eqs.~3! or
~4! constitutes the first principal result of this paper.

The behavior of Eq.~4! is still not particularly evident,
but can be made transparent by writing the ‘‘exponential
an exponential’’ as@8,5#

exp@x exp~2u!#'11@exp~x!21#expS 2
xu

@12exp~2x!# D ,

which has the advantage of reducing to the conventio
steepest descent approximation for largex, and is correct for
arbitrary values ofx if u is sufficiently small. Use of this
approximation therefore yields the correct asymptotic beh
ior for large and small values ofx. The remaining integrals
are straightforward to perform, and give

p~x!;
exp~2x!

z~b!
1

@12exp~2x!#11b

z~b!@12exp~2x!1x#b

as an approximation for the PDF@Eqs. ~3! and ~4!# which
conveniently reveals its structure. Ifx is small, p(x)
;1/z(b), whereas ifx is large, the distribution has a powe
law tail with p(x);1/xb. In Appendix A it is shown that the
asymptotic form of the tail can be determined with grea
precision to be
6-4
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p~x!;
1

z~b!xb S 11
314~b11/2!~b23/2!

8x
1••• D ~5!

whenx@1. Ther th moment of Eqs.~3! and~4! exists only if
r ,b21, a property inherited from the parent distributio
@Eq. ~2!#. In particular, a mean flight lengtĥl & exists if b
.2, and an elementary calculation obtains

^ l &52D l
z~b21!

z~b!
, ~6!

and so a grain moving through a pile of total lengthL has on
averageM̄5L/^ l & flights before leaving the system.

The distinction between the distribution describing th
random walk and a Le´vy distribution is important to clarify,
even though they ostensibly appear to have sim
asymptotic forms. The power-law tail in a Le´vy random
walk occurs as a consequence of the power-law distribu
individual step lengths. Le´vy random walks are inappropriat
for describing, for example, the spatial movement of mate
where the energetics would prohibit the occurrence of a
trary sized step lengths. In such instances it is more ap
priate for the individual steps to have finite integer momen
but with the power-law behavior for the resultant ultimate
deriving from another mechanism such as number fluc
tions. Moreover, the index of the power law appearing in E
~2! is evidently not restricted to lie in the range for that of t
stable distributions.

The dashed curve in Fig. 4 shows the distribution ol
obtained from the cellular automaton for all grains eman
ing from site 2 of the pile. This has a power-law tail wi
index 22.14, and can be readily explained using the inf
mation contained in Fig. 3 together with the random wa
described above. The full curve shows the distribution@Eq.
~3!# whereD l 54 has been used, in accord with the val

FIG. 4. The dashed curve is the distribution of flight lengt
obtained from the cellular automaton for a pile of lengthL5400.
The linearly scaled data are shown by the chain curve, and
compared with the distribution given by Eq.~3!, shown by the full
curve.
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deduced from the average slope of a SOC pile. The ch
curve is a simple linear scaling of the data,p( l )→0.6p(2l ).
The agreement for large flight lengths is excellent, and
discrepancy at short flight lengths results from the simpli
ing assumption of uniform interplateau distances that w
used to derive Eq.~3!.

IV. DISTRIBUTION OF TRAPPING TIMES AND TRANSIT
TIMES

The second diagnostic used in Ref.@4# was the distribu-
tion of ‘‘trapping times,’’ which is the time a grain remain
at rest at a particular site. The trapping time occurs on
long time scale that is characterized by the rate of fueli
Each site is monitored to give a distribution of trapping tim
for the pile as a whole, and it was found that this distributi
has a power-law tail and other features for which the follo
ing model can account.

A grain has the opportunity to move, and thereby end
trapping-time period, only if it is on the surface. Grains th
are buried must wait until they are excavated. Figure 5 sho
the distribution for increments in heightDh of the pile at
different locations removed from the central fueling poin
The increments are essentially stationary and have z
mean, but they are skewed and so deviate from a Gaus
distribution, which is also shown in the figure. Supposing
the moment that the distribution of height fluctuations a
approximated by a Gaussian distribution, the instances w
a particular grain returns to the surface may then be in
preted as the first return time of a Brownian fractal. T
distribution for such a return time has a power-law tail@9#. In
fact, because the height fluctuations are distinct from
Gaussian leads to being able to quantitatively determine
index of the power-law tail. However, the execution of th
calculation itself requires a number of technical innovatio
which have a currency beyond applications to sand piles,
so the details were presented elsewhere@12#. For the pur-
poses of this paper, it is entirely correct to model the timetm

re

FIG. 5. Showing the fluctuations in height for different locatio
in the pile on a semilogarithmic plot. The curve codes are annota
on the figure with the Gaussian for comparison.
6-5
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K. I. HOPCRAFT, E. JAKEMAN, AND R. M. J. TANNER PHYSICAL REVIEW E64 016116
for a grain to return to the surface with a Le´vy distributed
random variable. The index of the distribution used will
obtained empirically from the cellular automaton simulatio

Although it is necessary for a grain to be on the surfa
for a trapping time to end, this requirement is not sufficie
The disinterred grain may be at a stable site, or may
buried again before having the opportunity to move. Thu
trapping timet comprises a sum of separate Le´vy distributed
time incrementstm between a grain remaining or returning
the surface, viz.

t5 (
m51

N

tm , ~7!

whereN denotes the number of instances that a grain is
posed at the surface of the pile but doesnot move. The
trapping time ends when the grain comes to the surface
doesmove. The dashed curve in Fig. 6 illustrates the PDF
N as obtained from the cellular automaton. The dashed cu
is the negative binomial distribution@10#

P~N!5S N1a21

N D ~N̄/a!N

~11N̄/a!N1a
, ~8!

with a mean number of stepsN̄580 and a clustering param
etera50.2. Remarkably, the data are indistinguishable fr
this model over three decades of values forN, and the inset
shows that the model is accurate at very small values oN
also. The reason why the number of resurfaces and rebu
of a tracer grain at the surface of the pile should be ac
rately described by the negative binomial distribution is u
clear, but the empirical evidence is compelling. Distributi
~8! has two parameters:N̄ is the mean anda.0 is the clus-
ter parameter. The special casea51 is the Bose-Einstein o

FIG. 6. The full curve shows the probability density for th
number of instances that a grain is exposed at the surface of the
but does not move, derived from cellular automaton data.

dashed curve is the negative binomial distribution withN̄580 and
a50.2. Both are shown on semilogarithmic plots. The inset
solves the PDF for smaller numbers of exposures.
01611
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geometrical distribution, which describes ‘‘thermal’’ numb
fluctuations, anda→` is the Poisson distribution describin
a purely random number of steps. The smaller the value oa,
the greater the strength of the clustering. Insofar as the
tistical description of clustering is an inherent feature of t
distribution, it is again appropriate to use it in a variab
step-number random walk to incorporate the effect of cor
lations. Bunching arises in the pile in the following qualit
tive fashion. Consider a system-wide avalanche in whic
large number of tracer particles moves from, or resurfaces
a particular site in the pile. Grains that have moved come
rest elsewhere, and therefore commence a new trapping t
Those that have resurfaced end their present trapping
and commence a new one. Thus a large set of grains sim
taneously commences a fresh trapping time. After such
avalanche, successive fueling events tend to result in s
sized avalanches confined to the top of the pile as the s
increases from a subcritical state. With each feed, all surf
tracer grains at locations further down the pile receive id
tical time increments to their trapping times. Eventually t
avalanches become larger and reach groups of surface t
grains, bringing several trapping times to an end simu
neously. Many of these trapping times will comprise a sim
lar number of time increments which provides the cluster
in N.

These empirical facts will now be developed into a ra
dom walk model for the distribution of trapping times. Th
ingredients are individual ‘‘subtrapping time’’ incremen
tm , which are power law distributed and can therefore
modeled by a Le´vy distribution, together with a discret
numberN of times that a grain comes to the surface of t
pile without moving from that site, the statistics for which
described by Eq.~8!. This model is similar to that introduce
in Ref. @5#. The difference here is that the time incrementstm

ile
e

-

FIG. 7. The dashed curve shows the trapping time distribut
for the cellular automaton, which is then linearly scaled given
the chain curve for comparison with the limit distribution~12!

shown in full. The curve shows the PDF for finiteN̄, which intro-
duces an inner scale indicated by the thorn on the upper axis.

values ofa50.2 andN̄580 are those derived from the PDF illus
trated in Fig. 6.
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are all positive, so that the theory must be recast in term
the one-sided Le´vy distributions to modeltm .

In Appendix B it is shown that using a one-sided Le´vy
distribution to describe the time increments with numb
fluctuations described by Eq.~8! obtains the following limit
distribution for the trapping time on letting the average nu
ber of stepsN̄→`:

pa,g~ t !5Re
1

pE0

`

~11ug~11 iL!/a!2a exp~ iut !du,

~9!

where

L5H 2

p
lnuuu, g51

tan~gp/2!, gÞ1.

This density function is valid if the individual steps in th
walk are drawn from the class of stable Le´vy processes or
from distributions having power-law tailssimilar to Lévy
distributions, and it constitutes the second principal resul
in

t

t

u

01611
of

r

-

f

this paper. In common with its parent Le´vy distribution, the
two parameter distribution@Eq. ~9!# has divergent intege
moments. Although not of the stable class, this distribution
infinitely divisible, and this property has implications for e
plaining some features in data that follows.

The asymptotic behavior of the distribution@Eq. ~9!# can
be deduced for different values ofa andg. When t@1 the
form adopted by Eq.~9! is similar to that of the Le´vy distri-
bution with the same indexg, i.e., pa,g(t);t2g21, giving a
scale invariant behavior in this regime. Specifically,

pa,g~ t !;
2G~11g!

p
sinS pg

2 D t212g, 0,g,2, x@1.

~10!

When t!1, the form of the distribution depends upon th
size of bothg and the productag when compared with
unity. The important property to note is that the distributi
can have either an increasing or decreasing power law
small values oft for particular values of the parametersa
andg. Specifically,
pa,g~ t !;

¦

@aucos~gp/2!u#a

gG~a,g!

sin@ap~g21!#

sin~apg!
tag21, ag,1, g.1 ~11a!

@aucos~gp/2!u#1/gG~111/g!G@~ag21!/g#sin~p/g!

pG~a!
, ag.1, g.1 ~11b!

@aucos~gp/2!u#a

G~a,g!
tag21, all ag, g,1 ~11c!

1

2 S cos~gp/2!

g D 1/g

, ag51, g,1 ~11d!

2
sin~p/g!

p S ucos~gp/2!u
g D 1/g

ln~ t !, ag51, g.1 ~11e!
of
e-

ed
of
d
g.

-

ster
Attention is drawn to the behavior of this distribution
those instances wheng.1. If g.1 andag,1, the distri-
bution possesses two separate power-law behaviors, in
tail with pa,g(t);t2g21 and at small values oft where
p(t);tag21, @Eq. ~11a!#. If ag.1 the distribution retains its
power-law tail but has an inner scale@Eq. ~11b!#.

The effect of finiteN̄ is to modify the distribution, so tha
the PDF is now.

pN̄~ t !5Re
1

pE0

`F11
N̄

a
@12exp~2ug~11 iL!/N̄!#G2a

3exp~ iut !du, ~12!

which has three parameters:N̄,g, anda. An analysis identi-
cal to that shown in Ref.@5# reveals thatN̄ introduces an
inner scale which resolves the inner power law that occ
he

rs

when ag,1. This inner scale extends out tot;g(N̄)21/g.
Beyond this region, the PDF matches the inner power-law
the limit distribution, whereupon the two distributions b
come indistinguishable.

Figure 7 shows the trapping-time distribution obtain
from the cellular automaton, which has a power-law tail
indexn t522.16, so thatg521.16, indicated by the dashe
curve. This, together with the information derived from Fi
5, N̄580 anda50.2, enables one to obtain all the param
eters required to apply distributions~9! and ~12!. For N̄
;80, the inner scale occurs att;0.027.

Asymptotes~10! and ~11a!, that predict the power-law
indicesn t andn f , associated with the tail and ‘front’ of the
distribution, respectively, are connected through the clu
parameter by

n f1an t111a50. ~13!
6-7



en
he
th
a

e
.
n
r

m
.
on

ry
f
6

e

n

n
m

fo
or
o
d

st
e

m
t
ti

s

-
e

la
a
rm
re
e
he
e
te
e
m

de

t a
site
ore
t a
ur-
en
ided
he
ibed
ap-

p-

es
the
e
ed;
s,

the

ex-
of
s

here
of
ex-

dis-
the
of
hts
e a
ia,
om-

sses
d
aw
has
a

rs
e of
ch

hat
he
in-
ed
his
s of
in a
vior
ich
re-

ibu-
-
ose

ics

K. I. HOPCRAFT, E. JAKEMAN, AND R. M. J. TANNER PHYSICAL REVIEW E64 016116
Relationship~13! allows one to make a comparison betwe
distribution ~9! and the temporal behavior observed in t
cellular automaton. The dot-dashed curve in Fig. 7 shows
trapping-time distribution derived from the cellular autom
ton @4# for a sand pile of lengthL5400. Although sand piles
with L.400 were studied in Ref.@4#, these revealed no new
features. From Fig. 7 the indices of the tail and front pow
laws aren t522.16 andn f520.78, which, on using Eq
~13!, give g51.16 anda50.2 as parameters for distributio
~9!. The value fora is in accord with the value of the cluste
parameter obtained for the number fluctuations. The li
distribution @Eq. ~9!# is also shown in Fig. 7 by a full line
The chain line is data obtained from the cellular automat
which is scaled linearly according top(t)→50p(t/80). The
limit distribution @Eq. ~9!# overestimates the number of ve
short trapping times, since it assumes the existence o
infinite number of arbitrarily small step lengths. Figure
indicates thatN̄;80, which, although large, is finite. Th
dotted line in Fig. 7 shows the distribution@Eq. ~12!# with
N̄;80. This has the same asymptotic behavior, but an in
scale resolves the small-scale power law.

Figure 3 of Ref.@4# showed the transit-time distributio
for grains passing through the entire pile. This has the sa
tail as the distribution for trapping times, but is constant
small transit times, i.e., it exhibits an inner scale for sh
transit times. This behavior is readily understood in terms
the model presented here, since the transit time is the in
pendent sum of individual trapping times. The characteri
function of the distribution of the transit times is of the sam
form as that in Eq.~9! by virtue of infinite divisibility, but
with different parameter, viz.

@11ug~11 iL!/a#2M̄a,

with M̄ the average number of trappings on the long ti
scale that a grain experiences before being expelled from
pile. This distribution has the same power-law asympto
form for large values oft as in Eq.~10!. The behavior for
small values oft depends on the value ofM̄ which can be
estimated from Eq.~6!. M̄ is greater than unity for system
of sizeL.40, butM̄ag.1 for system sizesL.175. Thus
for system sizes greater than;175, the transit-time distribu
tion will exhibit an inner scale, and this is verified by th
automaton simulations.

V. SUMMARY AND CONCLUSIONS

This paper has applied diagnostics to a rice-pile simu
tion. These diagnostics have indicated that the spatial
temporal behaviors of tracer grains can be described in te
of random walk models. Crucially these random walks
quire the incorporation of step number fluctuations into th
formulation. The first model describes the distribution for t
resultant flight lengths of grains. This is shown to compris
sum of relatively short subflights whose number fluctua
according to a discrete power law. The index of the pow
law describing the resultant flight lengths is inherited fro
the number fluctuation distribution. The second model
01611
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scribes a temporal quantity, the distribution of times tha
grain remains at rest before being transported to another
by an avalanche. The mechanism at work here is m
subtle, and relies on the height of the pile fluctuating a
particular site, and thereby bringing a tracer grain to the s
face at particular times. The distribution of times betwe
such returns to the surface can be modeled with a one-s
Lévy distribution. The number of times a grain returns to t
surface before being transported to another site is descr
accurately by a negative binomial distribution, and so a tr
ping time comprises a sum of Le´vy distributed step lengths
which fluctuate in number. The power-law tail of the tra
ping time distribution is inherited from the individual Le´vy
steps which correspond to the distribution of those tim
when a grain is buried and so cannot move. The index for
tail of the distribution is intimately related to the form of th
height fluctuations, and can be quantitatively determin
however, this calculation itself requires distinct innovation
and so the details are presented elsewhere@12#. Features of
the distribution occurring at small times are governed by
clustering introduced by the number fluctuations.

There are several routes via which this work can be
tended and exploited. A technical study of the properties
clustered Le´vy random walks formed in higher dimension
and from a finite number of steps was presented elsew
@5#. A random walk with a power-law distributed number
steps is novel and warrants further investigation. For
ample, the value of the indexb will affect the rate of con-
vergence to either a Gaussian distribution or other stable
tributions. The properties of such random walks either on
line or in higher dimensions is of relevance to the study
macroscopic transport phenomena. Analyzing the flig
made by tracer particles down SOC profiles can provid
paradigm for motion through unstable or turbulent med
and thereby elucidate aspects of anomalous transport in c
plex systems. At a deeper level, the stochastic proce
which creatediscretepower distributions are of intrinsic an
fundamental interest. The mechanism by which power-l
behavior is manifested in temporal properties of the pile
been linked to the classical problem of ‘‘first return’’ of
stochastic process.

Earlier work produced by a large collective of autho
showed how simple cellular automata can reproduce som
the effects observed in the evolution of sand piles. Su
work has helped to identify the microscopic mechanisms t
may play an important but hidden role in determining t
cooperative behavior of complex systems. Adopting a pr
cipally computational approach has not, however, provid
much physical insight into the processes taking place. T
paper has performed a detailed analysis of the statistic
both microscopic transitions and macroscopic changes
sand pile. In so doing it has revealed patterns of beha
which are amenable to physical interpretation and for wh
stochastic models either exist or can be developed. With
gard to these developments, the discrete power-law distr
tion provides a potentially fruitful vein for further investiga
tion. The construction of models describing processes wh
equilibrium or limiting forms have these unusual statist
6-8
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warrants further study, since these processes evidently un
pin the dynamics of SOC behavior at the deepest level@13#.
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APPENDIX A

This appendix contains an asymptotic analysis of the s
tial random walk for the flight lengths. This requires eva
ation of the PDF@Eq. ~3!#,

p~x!5
exp~2x!

z~b! (
Ns50

`
xNs

Ns! ~11Ns!
b

which, with the aid of Stirling’s formula to representNs!,
can be approximated by the integral

p~x!5
1

z~b!~2p!1/2E0

` exp@y ln~x!1y2y ln~y!2x#dy

y1/2~11y!b
.

The argument of the exponential function has a single tu
ing point aty5x, where the numerator of the integrand a
tains a maximum value of unity. The value of the integ
will therefore be dominated by the behavior of the integra
in the vicinity of y5x. Expanding the argument of the ex
ponential function to second order about this point leads
the approximation

exp@2~y2x!2/2y#,

which possesses the correct behavior neary5x when x is
large. Settingy5(11u)x and consideringx@1 obtains

p~x!5
x1/22b

z~b!~2p!1/2E21

` exp$2xu2/@2~11u!#%du

~11u!b11/2
.

.
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This integral is in a form that is amenable to the analy
given in Ref.@11#, whereupon the first two terms in the ex
pansion are readily found to be those given by Eq.~5! in the
text. It is simple to show that, for small values ofx,

p~x!;
1

z~b! F12xS 12
1

2bD1
x2

2 S 11
1

3b 2
1

2b21D 1•••G .

APPENDIX B

This appendix derives the distribution@Eq. ~9!# which de-
scribes fluctuations in the random variable

t5 (
m51

N

tm ,

where thetm are independent but statistically identical on
sided Lévy distributed random variables with the characte
istic function

CL~u!5exp$2uuug@11 isgn~u!L#%,

andN fluctuates according to the negative binomial distrib
tion @Eq. ~8!#. The average characteristic function that resu
from considering all realizations ofN is

C~u!5 (
N50

`

P~N!CL~u!N5S 11
N̄

a
@12CL~u!# D 2a

and the distribution forp(t) follows on Fourier transforming
this. Noting thatCL(2u)5CL(u)* obtains

p~ t !5Re
1

pE0

`

du exp~ iut !C~u!,

which is the distribution@Eq. ~12!#. On rescalingu through
u→u/N̄1/g, followed by a scaling int→tN̄1/g obtains the
distribution @Eq. ~12!#; then lettingN̄→` obtains the limit
distribution @Eq. ~9!#.
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