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Characterization of structural reorganization in rice piles
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Diagnostics applied to a rice-pile cellular automaton reveal different mechanisms producing power-law
behaviors of statistical attributes of grains which are germane to self organised critical phenomena. The
probability distributions for these quantities can be derived from two distinct random walk models that account
for correlated clustered behavior through incorporating fluctuations in the number of steps in the walk. The first
model describes the distribution for a spatial quantity, the resultant flight length of grains. This has a power-law
tail caused by grains moving through a discrete, power-law distributed number of random steps of finite length.
Developing this model into a random walk obtains distributions for the resultant flight length with character-
istics similar to Lery distributions. The second random walk model is devised to explain a temporal quantity,
the distribution of “trapping” or “residence” times of grains at single locations in the pile. Diagnostics reveal
that the trapping time can be constructed as a sum of “subtrapping times,” which are described oy a Le
distribution where the number of terms in the sum is a discrete random variable accurately described by a
negative binomial distribution. The infinitely divisible, two-parameter, limit distribution for the resultant of
such a random walk is discussed, and describes a dual-scale power-law behavior if the number fluctuations are
strongly clustered. The form for the distribution of transit times of grains results as a corollary.
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[. INTRODUCTION exhibited a dual power law at short and long scales for the
distribution describing the trapping time of grains, but again
Interest in self organized criticalitySOQ is multidisci-  the authors confined their attention and discussion to the tail
plinary, and continues to burgedsee, e.g., Refl1]). The  of the distribution, modeling it with Dey statistics. A dual
concept of SOC refers to the spontaneous emergence of corpewer-law behavior cannot be described usingylLstatis-
plexity in nonequilibrium systems that are nevertheless dytics, which can only characterize the power law featured on
namically simple. Particular attention has been paid to thehe largest scales. One aim of this paper is to deconstruct the
statistical mechanics of granular media and, as a conséemporal behavior produced by the cellular automaton, and
guence, the “sandpile” has become the touchstone of SOQdescribe it in terms of a random walk model which has, as a
When a pile of sand is fueled by the addition of grains, itkey ingredient, fluctuations in the number of steps forming
evolves into a state where, on average, the quantity of mattéhe walk, as in Refl5]. This is motivated by the well known
expelled from the pile is equal to the amount added to ittechniqud 6] by which correlation may be introduced into a
This dynamic equilibrium is maintained by an intermittent random walk through fluctuations in the number of steps,
cascade of material down the pile through avalanches thaheaning that successive realisations of the walk contain dif-
exist on all scale sizes up to the dimensions of the systenferent numbers of stegadependent of the properties of the
This sandpile paradigm has prompted workers to charactestep lengthsThis allows a sequence of events to be clustered
ize complex systems through a simplified dynamics wherdcorrelated in time, for example, although their individual
fueling is followed by reorganization once a local critical contribution to the quantity of interest are unrelated to the
threshold is exceeded. The reorganization can lead to instalustering process. A consequence of this is that the dual
bility at other sites, and consequently can establish longpower-law behavior for trapping times occurs naturally and,
scale correlated behavior throughout the pile. The statisticahoreover, predicts the observed form for the distribution of
description of the scale-invariant behavior that is obtained igransit times. It was also shown in R¢#] that the distribu-
typified by distributions possessing power-law tails, and intion of flight lengths of grains could be modeled using/y.e
seeking a model for this, interest in the class of “stable” orstatistics. This raises the paradox that a spatial transport
“Levy” distributions [2] has been rekindled. quantity can have arbitrarily large excursions, which appar-
SOC behavior was demonstrated experimentally in theently conflicts with constraints imposed by the energetics of
celebrated “Oslo rice pile”[3], and its detailed dynamics the system. Another aim of this paper is to resolve this para-
was elucidated by investigating the motion of tracer grainsdox by showing that a grain’s flight is comprised of a fluc-
The distribution for the transit times of grains through ricetuating number of “subflights” of finite length, where the
piles of variable size exhibited, on the longest scales, a daaumber of subflights is described by a discrete power law.
caying power law extending over approximately two de-This notion leads to flight lengths possessing the attributes of
cades. The data show a second region of power-law behaviar Levy distribution without the attendant problem of un-
an the shortest time scales for smaller sized rice piles, alphysical energetics.
though the authors did not comment upon this. A cellular Cellular automata provide an important tool for the inves-
automaton that purported to model this rice pi§ also tigation of the dynamics of sand piles. Based on a few el-
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ementary rules, they have enabled a prediction of macro Hole
scopic behaviors that can and have been observed in re
systems, and advanced the knowledge of the microscopi
dynamics involved. However, the choice of model has not
been related closely to the properties of any individual sys-
tem, since the objectives have, to date, been principally to . : I
iluminate the genJeric processes leading to S(F))C ar?d t}éleir _FIG. 1. The esgentlal elements from which a sand pile is com-
o - prised, together with the frequency of occurrence.
overall outcome. To make quantitative predictions of a prac-
tical nature, it is important to understand in greater detail
how the microscopic reorganizations of the system are reso that ifz =z{, z,_,—z _1+1, z.—z —1. The redistri-
lated to the assumed numerical model. This would enable bution of grains at unstable sites occurs sequentially, count-
more realistic modeling of both naturally occurring and syn-ing from the left to the right of the pile, in accordance with
thesized phenomena to be achieved in the future. As a recausality. Iteration throughout the pile continues until it at-
sponse to this, this paper presents a detailed statistical anaklins a state witlz,,< z%, everywhere. The pile is then fueled
sis of the internal reorganizations of a sand pile predicted byt the top, so that;—z;+1, and the process continues. The
an established cellular automaton. This provides further intoppling rule of the automaton used here differs slightly from
sight into the relevance of random walk models to the subthat ysed in Ref4], where the condition wag,,>z%,, which
ject, and emphasizes the importance of discrete number flugrecessarily has fewer toppling events and results in a
tuations as a descriptor and motor for the dynamics. “steeper” pile. This alteration does not affect the statistical
This paper first reviews the cellular automaton used typerties of the tracer grains, but has the advantage of being
describe the rice-pile experiment, describing in particular thgnore efficient computationally, and therefore allows more
physical structure of the pile in the self-organized state andgphjsticated diagnostics to be applied. The simplicity of the
how this structure influences the various behaviors of traceg|gorithm belies the complexity of behavior it describes.
grains transported through the pile. Section Il concentrates “1\yq diagnostics were used in REf] to characterize be-

on a spatial property, the distribution of flight lengths, andpavior: the “flight length” and “trapping-time” distribu-
illustrates how these can be deduced from a random walfons of grains. To understand how the empirical results
model where the number of steps in the walk fluctuates withyoted in Ref[4] arise and become quantifiable in terms of
a discrete power-law distribution. Section IV focuses on temyq distinct but simple stochastic models, diagnostics have
poral properties, and presents evidence that the trapping timg pe applied to the cellular automaton that elucidate the
distribution can also be understood using a random wallgtatistical mechanics of the ensemble of grains. The way that
model, but where now the individual steps in the walk arehese diagnostics inform the construction of these models is

Levy distributed time increments and the number of steps igest appreciated by describing some aspects of the cellular
a negative binomial random variate. This distribution is theny ;tomatons behavior.

used to derive the observed form of the transit time distribu- 5 pile in the self-organized state forms a sequence of
tion of tracer grains. Section V summarizes and discusses thiaircases” interspersed with “plateaus” and, less fre-
implications of this work. Technical details pertaining to thequenﬂy, “holes.” These elements are illustrated in Fig. 1.
denvatl(_)ns and forms of the distributions are assigned terpe algorithm predicts that a stable SOC pile has an average
appendixes. slope ~3/4, and so~75% of the piles’ surfaces comprise
sections of staircasey25% plateaus, with holes occurring
Il. RICE-PILE CELLULAR AUTOMATON with a frequency<1%. The distance between consecutive
plateaus is approximately exponentially distributed, with a
The cellular automaton studied in Réﬂ] was deSigned mean interp|ateau Spacing|~4 grain sites, and most p|a_
to replicate experimental data of the Oslo rice pile reportedeaus have a length of two sites. Thus a stable pile of total
in Ref.[3], and has the advantage of being able to track angength 400 has about 100 plateaus randomly distributed
apply diagnostics to test particles as they move throughouhrough it. The algorithm proceeds by the addition of a grain
the pile. The automaton therefore enables microscopic propp the first site of such a pile. The stability of this site is
erties of particles and macroscopic attributes of the entirgested and, if unstable, the grain moves to the next site, and
pile to be studied simultaneously. so on, until coming to rest. Grains must necessarily move
The cellular automaton examines the stability of a set ofjown a staircase section, and so the principal location at
slopesz,, in excess of an angle of repose, where€m<L  which a grain can come to rest is a plateau. Such a potential
labels a spatial position within the pile. If the slope attains &esting site has a random preassigned critical slope associ-
critical gradientz;, at sitem, “sand” is redistributed in such ated with it. If this is 1, the grain continues to the next po-
a way that the gradient is reduced to a subcritical value thergential resting site on the same or at the next plateau. If the
and raised at nearest neighbor sites according to thezgule critical slope is 2, the grain “sticks.” In those rare instances
=28 =7n 1—Zn-1+1, Zn—>2Zn—2, Znr1—Zme1+1. The  when a grain falls into a hole, it sticks with probability 1 and
critical gradient at a site is a Bernoulli random variable thatforms a new plateau. Holes rapidly fill, accounting for their
fluctuates between 1 and 2 with equal probability, being reinfrequent occurrences. Because the critical slope is either 1
assigned whenever a grain passes over that site. Special car-2 with equal probability, a grain has an average subflight
ditions apply at the end of the pile, where the rule is modifiedength of two interplateau distances, or approximately eight-

Step Plateau

<1% ~75 % ~25 %
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grain sites before it comes to rest at a plateau. All the sites . 5 10 0 109 200 1000
over which this grain has passdstaircases and plateaus
alike) are “perturbed” by randomly reassigning their critical

slopes. Hence the potential exists for one of these sites o o
which was initially stable, to be transformed to an unstable

site (and vice versa An unstable site will shed a grain, caus- 0.01 0.01
ing another subflight to ensue and continue the “avalanche.”

The order in which the stability of sites is tested always ,, y o.00 0.001
increases away from the top, effectively running down the

surface of the pile. Hence there is an "“active zone” defining 0. 0001 o 0001

the spatial extent between where grains commence and tel
minate their subflights: it denotes the location of the ava-
lanche at any instant, and is purely a surface feature. Witt 0.00001 0.00001
each grain’s subflight, the active zone fluctuates in position
within the pile and in length, the latter necessarily evolving
to zero as the pile returns to a state of global stability. It is
the position of the rear of the active zofie., closest to the
top of the pilg that determines whether a tracer grain has the FIG. 2. The probability density for the location for the rear of
opportunity for another subflight. The next time that the rearthe active zonen, for a pile of lengthL =1000. The distribution is
of the active zone passes over such a grain at the surface afpower law with index- 0.8, and is normalizable only by virtue of
the pile, it has the opportunity to move on another subflightan end effect. The distribution fan, has the same power law for
One aspect to note is that the algorithm contains disparatemaller pile lengths.
time scales. The “long” time scale characterizes the fueling
of grains which occurs between the pile being in two con-flight of lengthl for a pile of size 400 sites. The flight length
secutive stable states. The “short” time scale characterizep= Ei’\'jl i is the total distance traveled by a grain between
the redistribution of all those grains that move between fuelfyeling events, and fluctuates wity and|;. The distribu-
ing events, and therefore fluctuates between successive adglpn shown is for tracer grains emanating from site 2 of the
tion of grains in accordance with the size of avalanche that igjle, principally because these have the potential for the
produced. Despite this, the avalanche is considered to ocCiingest flights. This discrete distribution is a power law of
instantaneously on the long time scale. index —2.14. The cutoff aNs~100 is due to the finite size
of the pile. The reasons for the discrepancy between the in-
dices of the power laws fdilg andm, are complex. A grain
does not necessarily move on another subflight whgn
Section Il described an active zone, which denotes th@asses over it; rather it has tlepportunity to move. For
location and spatial extent of the avalanche and occurs on thexample, the critical slope may have been reassigned to site
short time scale. The feature of this structure that dictate®, or the grain may be buried below the surface, in which
whether or not an avalanche persists is the location of thease the grain will not or cannot move. Moreover the distri-
rear of the active zonm,; as this moves over tracer grains, bution for Ng is constructed as an ensemble average over all
its action provides them with the opportunity to move off to
the next place of residence. Figure 2 shows the probability 1 2 5 10 20 50 100
distribution form, for a pile of lengthL =1000. The distri-
bution is a power law over three decades with inde®.8.

5 10 50 100 500
mg

[ll. DISTRIBUTION OF FLIGHT LENGTHS

The feature appearing at small valueswfis due to special 0.1 ot
conditions that prevail near the fueling point, and the cutoff

at largest scales is due to the finite length of the system. Thi 0.01 0.01
very shallow power law implies that the active zone has no

mean location. Therefore, it can move anywhere over the W, 0-001 0.001
entire pile, triggering grains to move as it does so. Indeed, " *

this must be so, for a tracer grain would hardly ever be - s o0

expelled from the pile unless the active zone could explore
every part of it. Thus a property of individual grains is influ-
enced by a macroscopic structure of the pile. A grain has the 0.00001 0.00001
opportunity to move many times within an avalanchergs
moves back and forth. Moreover, this spatial movement
causes the excavation of interred tracer grains which affec
the temporal behavior of the pile, as will be explored in Sec.
V. FIG. 3. The distribution for the number of subflightg for a

Figure 3 shows the probability distribution fofs, the  pile of length L=400, which is a power law with index3
number of subflights of length that cause a total avalanche =-2.14.

2 5 10 20 50 100
N;
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realizations of resultant flight lengthsThere are many com- where the Riemann zeta functid@ig) [7] provides normal-
binations of subflights; comprising a given resultant flight  ization. In approximating the rice pile behavior, it is assumed
and the probability for occurrence for these individual real-that the number of steps is independent of the length of each
izations would require enumeration if a match were soughtstep. The distribution for the resultant flight lendththat

For the purpose of this paper it is sufficient to note that theesults from averaging over all realizationsN{ is

underlying reason for the power law Mg derives from the

power law form,. It will now be shown how the above -
empirical observation that a tracer particle receives a power- p()= szl P(Ns)pNs(l)
law distributed number of “kicks” is used to obtain the dis- °
tribution for | which matches the cellular automaton data. It (p—1)exd —(u— 1)1/ nAl]
will be shown that the resultant of the random walk is also a - wAlZ(B)
power law distribution with the same exponent as the num-
ber fluctuations. “ (=11 Ns 1
In Sec. Il the motion of grains was described as being a & ( wAl ) N (1+Ng)?"
series of “jumps” or subflights which have an average
length of eight sites, being two interplateau lengths. The acSettingx= (. — 1)/ xAl obtains
tual distribution of interplateau lengths matters little to what
follows, and can be taken as constant. The subflights can exp(—X) i xNs 3
then be considered as integer multiples of a fixed interplateau p(x) (B W20 N (1-No)P ©)

length Al, so thatl,=nAl. Suppose that the probability of
traversing any possible resting site iglivheren>1. For  ap aiternative expression for this probability density func-

the cellular automatory. =2, because the critical slope at jjong (PDF) can be obtained on using the definition of the
the site of rest adopts one of two values. The probability Ofgamma functiorf7], to write

the grain travelling oven—1 independent potential resting

sites before remaining at thenth site is therefore 1 (=

(1/u)""1(1—1/u). Hence the generating function for ob- (1+ NS)Bsz duv?™exgd — (1+Ng)ul,
taining a subflight of length,, is 0

whereupon the summation can be evaluated to obtain the
equivalent integral representation for the P[Eg. (3)]:

® q\n
q(s)=<t%><10(—sln)>:(u—1);1 (;) exp(—nsAl)

(0= om0 [ dun = e - weix ex ~u)
_ X)= ———r u exp(—u)exg x exp(—u)].
__ mt PRO= BT B o
mexp(sAl)—1- (4)
The form of the generating function nea+=0 determines This distribution, expressed either in the form of E(.or
the large-scale asymptotic behavior, i.e., (4) constitutes the first principal result of this paper.
The behavior of Eq(4) is still not particularly evident,
1 but can be made transparent by writing the “exponential of
a(s)~ 1+ usAl/(p—1)° an exponential” ag8,5]
which is the generating function of the exponential distribu- oo+ oy — 1)~ 14+ Texn(x) — 1 exp{ _ Xu
tion. A random walk comprising\s such independent sub- Hxexp—u)] Lexp0x)—1] [1—exp—x)]/’
flights has a resultant ) ) )
which has the advantage of reducing to the conventional
Ns steepest descent approximation for lakgend is correct for
| = E I, (1) arbitrary values ofx if u is sufficiently small. Use of this
n=1 approximation therefore yields the correct asymptotic behav-

ior for large and small values of The remaining integrals

with a generating functiony(s)=q(s)", and this generates are straightforward to perform, and give

the gamma distribution

(M—l)|)Nsl (u—1) p(_(u—lﬂ) p(x)~
WAl LAIT(Ng) & WAl )

ex;:(—x)+ [1—exp—x)]*"#
{(B) L(B)[1—exp—x)+x]P

pn ()=

as an approximation for the PDOIEgs. (3) and (4)] which
‘conveniently reveals its structure. K is small, p(x)
~1/Z(B), whereas i is large, the distribution has a power-
law tail with p(x) ~ 1/x%. In Appendix A it is shown that the
=———3, Ng&=1, g>1 2 asymptotic form of the tail can be determined with greater
{(B)Ns precision to be

all moments of which exist. The model adopted for the num
ber fluctuations that is consistent with Fig. 3 is taken to be

P(Ns)
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FIG. 4. The dashed curve is the distribution of flight lengths  F|G. 5. Showing the fluctuations in height for different locations

obtained from the cellular automaton for a pile of lengt®400.  in the pile on a semilogarithmic plot. The curve codes are annotated
The linearly scaled data are shown by the chain curve, and argn the figure with the Gaussian for comparison.

compared with the distribution given by E), shown by the full

curve. deduced from the average slope of a SOC pile. The chain
curve is a simple linear scaling of the dapg])— 0.6p(2l).

1 3+4(B+1/2)(B—3/2) The agreement for large flight lengths is excellent, and the

L(B)xP 8x to ] 8 discrepancy at short flight lengths results from the simplify-
ing assumption of uniform interplateau distances that was

whenx> 1. Therth moment of Eqs(3) and(4) exists only if ~ used to derive Eq(3).

r<B—1, a property inherited from the parent distribution

[Eqg. (2)]. In particular, a mean flight lengtfl) exists if 8 IV. DISTRIBUTION OF TRAPPING TIMES AND TRANSIT

p(x)~

>2, and an elementary calculation obtains TIMES
{(B—1) The second diagnostic used in Rpf] was the distribu-
(h=2A1"———, (6) tion of “trapping times,” which is the time a grain remains
{B) at rest at a particular site. The trapping time occurs on the

long time scale that is characterized by the rate of fueling.

and so a grain moving through a pile of total lengthas on  gach site is monitored to give a distribution of trapping times
averageM =L/(l) flights before leaving the system. for the pile as a whole, and it was found that this distribution

The distinction between the distribution describing thishas a power-law tail and other features for which the follow-
random walk and a Ly distribution is important to clarify, ing model can account.
even though they ostensibly appear to have similar A grain has the opportunity to move, and thereby end a
asymptotic forms. The power-law tail in a" e random trapping-time period, only if it is on the surface. Grains that
walk occurs as a consequence of the power-law distributedre buried must wait until they are excavated. Figure 5 shows
individual step lengths. lwy random walks are inappropriate the distribution for increments in heigtith of the pile at
for describing, for example, the spatial movement of materiabifferent locations removed from the central fueling point.
where the energetics would prohibit the occurrence of arbiThe increments are essentially stationary and have zero
trary sized step lengths. In such instances it is more appranean, but they are skewed and so deviate from a Gaussian
priate for the individual steps to have finite integer momentsdistribution, which is also shown in the figure. Supposing for
but with the power-law behavior for the resultant ultimately the moment that the distribution of height fluctuations are
deriving from another mechanism such as number fluctuaapproximated by a Gaussian distribution, the instances when
tions. Moreover, the index of the power law appearing in Eqa particular grain returns to the surface may then be inter-
(2) is evidently not restricted to lie in the range for that of the preted as the first return time of a Brownian fractal. The
stable distributions. distribution for such a return time has a power-law f&jl In

The dashed curve in Fig. 4 shows the distributionl of fact, because the height fluctuations are distinct from a
obtained from the cellular automaton for all grains emanat-Gaussian leads to being able to quantitatively determine the
ing from site 2 of the pile. This has a power-law tail with index of the power-law tail. However, the execution of this
index —2.14, and can be readily explained using the infor-calculation itself requires a number of technical innovations
mation contained in Fig. 3 together with the random walkwhich have a currency beyond applications to sand piles, and
described above. The full curve shows the distribufiBg.  so the details were presented elsewHdr®. For the pur-
(3)] where Al=4 has been used, in accord with the valueposes of this paper, it is entirely correct to model the ttge
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FIG. 6. The full curve shows the probability density for the  FIG. 7. The dashed curve shows the trapping time distribution
number of instances that a grain is exposed at the surface of the piter the cellular automaton, which is then linearly scaled given by
but does not move, derived from cellular automaton data. Thehe chain curve for comparison with the limit distributigf?)
dashed curve is the negative binomial distribution Witk 80 and  shown in full. The curve shows the PDF for finitg which intro-
a=0.2. Both are shown on semilogarithmic plots. The inset re-duces an inner scale indicated by the thorn on the upper axis. The
solves the PDF for smaller numbers of exposures. values ofa=0.2 andN =80 are those derived from the PDF illus-

; trated in Fig. 6.
for a grain to return to the surface with a\nedistributed

random variable. The index of the distribution used will be geometrical distribution, which describes “thermal” number
obtained empirically from the cellular automaton S'mU|at'°”-quctuations, andv— = is the Poisson distribution describing
Although it is necessary for a grain to be on the surface, yrely random number of steps. The smaller the valug, of
for a trapping time to end, this requirement is not sufficient.\he greater the strength of the clustering. Insofar as the sta-
The_ d|smt§rred grain may be at a stat_)le site, or may begtical description of clustering is an inherent feature of the
buried again before having the opportunity to move. Thus gjisiripution, it is again appropriate to use it in a variable
trapping timet comprises a sum of separatewedistributed  gtep-number random walk to incorporate the effect of corre-
time increments, between a grain remaining or returning to |atjons. Bunching arises in the pile in the following qualita-

the surface, viz. tive fashion. Consider a system-wide avalanche in which a
N large number of tracer particles moves from, or resurfaces at,
_ a particular site in the pile. Grains that have moved come to
t= > tn, 7 ome
=1 rest elsewhere, and therefore commence a new trapping time.
Those that have resurfaced end their present trapping time
whereN denotes the number of instances that a grain is exand commence a new one. Thus a large set of grains simul-
posed at the surface of the pile but dogst move. The taneously commences a fresh trapping time. After such an
trapping time ends when the grain comes to the surface amvalanche, successive fueling events tend to result in small
doesmove. The dashed curve in Fig. 6 illustrates the PDF forsized avalanches confined to the top of the pile as the slope
N as obtained from the cellular automaton. The dashed curvigcreases from a subcritical state. With each feed, all surface
is the negative binomial distributigrd 0] tracer grains at locations further down the pile receive iden-
tical time increments to their trapping times. Eventually the
avalanches become larger and reach groups of surface tracer
(8 grains, bringing several trapping times to an end simulta-
neously. Many of these trapping times will comprise a simi-
_ lar number of time increments which provides the clustering
with a mean number of stepé=80 and a clustering param- i N.
etera=0.2. Remarkably, the data are indiStingUiShable from These empirica| facts will now be deve|0ped into a ran-
this model over three decades of valuesfbrand the inset  dom walk model for the distribution of trapping times. The
shows that the model is accurate at very small valuel of ingredients are individual “subtrapping time” increments
also. The reason why the number of resurfaces and reburiafs | which are power law distributed and can therefore be
of a tracer grain at the surface of the pile should be accumodeled by a [ey distribution, together with a discrete
I’ately described by the negative binomial diStI’ibution iS Un-numberN Of times that a grain comes to the Surface of the
clear, but the empirical evidence is compelling. Distributionpile without moving from that site, the statistics for which is
(8) has two parameter$l is the mean and>0 is the clus- described by Eq(8). This model is similar to that introduced
ter parameter. The special case 1 is the Bose-Einstein or in Ref.[5]. The difference here is that the time incremetpts

N+a—1
N

(N/a)N

P(N)= _—
(N) (1+N/a)N*e
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are all positive, so that the theory must be recast in terms ahis paper. In common with its parent e distribution, the

the one-sided ey distributions to modet,y,. two parameter distributiofEq. (9)] has divergent integer
In Appendix B it is shown that using a one-sidedviige moments. Although not of the stable class, this distribution is

distribution to describe the time increments with numberinfinitely divisible, and this property has implications for ex-

fluctuations described by E¢B) obtains the following limit  plaining some features in data that follows.

distribution for the trapping time on letting the average num- The asymptotic behavior of the distributipEqg. (9)] can

ber of stepN— oo: be deduced for different values af and y. Whent>1 the

form adopted by Eq(9) is similar to that of the Ley distri-

bution with the same indey, i.e., pw(t)~t‘7‘1, giving a

1 o
pa,y(t)zRe;fo (1+u7(1+iA) )" expliut)duy, scale invariant behavior in this regime. Specifically,

©)
2I'(1+
where pa‘y(t)~Msin(?)t‘l‘7, 0<y<2, x>L1
2I . (10
A ;n|u|, y=
tan(ym/2), y#1. Whent<1, the form of the distribution depends upon the

size of bothy and the productzy when compared with
This density function is valid if the individual steps in the unity. The important property to note is that the distribution
walk are drawn from the class of stablévyeprocesses or can have either an increasing or decreasing power law at
from distributions having power-law tailsimilar to Levy ~ small values oft for particular values of the parameteds
distributions, and it constitutes the second principal result o&nd y. Specifically,

[a|C;F5((27’T)/§)|]“ Sirg::;;g)l)] t77hay<l, y>1 (113
[a|C05(777/2)|]1/7F(1;1r/(7’c)“1;[(a7— 1)/ ylsin(m/y) Cayel ye1 (11b)
Pa,, ()~ Wﬁi{#ﬁ)”at”l, al ay, vy<1 (110
_S"‘(:/”('Coq“;”/z)lwm(t), ay=1, y>1 (110

Attention is drawn to the behavior of this distribution in when ay<1. This inner scale extends out te- y(N) .

those instances whep>1. If y>1 anday<1, the distri-  Beyond this region, the PDF matches the inner power-law of
bution possesses two separate power-law behaviors, in thee limit distribution, whereupon the two distributions be-
tail with pm(t)~t‘7‘l and at small values of where  come indistinguishable.

p(t)~t*7"*, [Eq.(118]. If ay>1 the distribution retainsits  Figure 7 shows the trapping-time distribution obtained

power-law tail but has an inner scdlgq. (11b)]. from the cellular automaton, which has a power-law tail of
The effect of finiteN is to modify the distribution, so that indexv,=—2.16, so thaty=—1.16, indicated by the dashed
the PDF is now. curve. This, together with the information derived from Fig.
. 5, N=80 anda=0.2, enables one to obtain all the param-

N e eters required to apply distribution®) and (12). For N
— — — 117
1+ a[l exp(— U (1+IA)/N)] ~ 80, the inner scale occurs &t 0.027.
) Asymptotes(10) and (113, that predict the power-law
Xexpiut)du, (12 indicesy, and v, associated with the tail and ‘front’ of the
o distribution, respectively, are connected through the cluster
which has three parameteis;y, anda. An analysis identi- parameter by
cal to that shown in Refl5] reveals thatN introduces an
inner scale which resolves the inner power law that occurs vit+tav;+1+a=0. (13

=R 1f°°
pn(t) = e .
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Relationship(13) allows one to make a comparison betweenscribes a temporal quantity, the distribution of times that a
distribution (9) and the temporal behavior observed in thegrain remains at rest before being transported to another site
cellular automaton. The dot-dashed curve in Fig. 7 shows they an avalanche. The mechanism at work here is more
trapping-time distribution derived from the cellular automa-subtle, and relies on the height of the pile fluctuating at a
ton [4] for a sand pile of length =400. Although sand piles particular site, and thereby bringing a tracer grain to the sur-
with L>400 were studied in Ref4], these revealed no new face at particular times. The distribution of times between
features. From Fig. 7 the indices of the tail and front powersych returns to the surface can be modeled with a one-sided
laws arev;=—2.16 andv;=—0.78, which, on using Eq. | ayy distribution. The number of times a grain returns to the
(13), give y=1.16 anda=0.2 as parameters for distribution g rface before being transported to another site is described
(9). The value forx is in accord with the value of the cluster ,ccyrately by a negative binomial distribution, and so a trap-
parameter obtained for the number fluctuations. The limi ing time comprises a sum of g distributed step lengths

f:ﬁtribﬁtipnl.[Eq: (93] :S a:;o;hgv:n in t';ig' 7”b3|/ a fUItI Iinet. which fluctuate in number. The power-law tail of the trap-
€ chain fin€ 1S data obtained from the cefiuiar automa Onping time distribution is inherited from the individual \ye

which is scaled linearly according fa(t)—50p(t/80). The steps which correspond to the distribution of those times

limit distribution [Eq. (9)] overestimates the number of very when a grain is buried and so cannot move. The index for the

short trapping times, since it assumes the existence of an. L T
infinite nﬁlr)nb%r of arbitrarily small step lengths. Figure 6 ail of the distribution is intimately related to the form of the

. — . S height fluctuations, and can be quantitatively determined;
indicates thatN~80, which, although large, is finite. The : L : T .
dotted line in Fig. 7 shows the distributigiq. (12)] with however, this calculation itself requires distinct innovations,

= i ) : _and so the details are presented elsewh&?¢ Features of
N~80. This has the same asymptotic behavior, but an innef,e gistribution occurring at small times are governed by the
scale resolves the small-scale power law.

. . o clustering introduced by the number fluctuations.
Figure 3 of Ref[4] showed the transit-time distribution 9 y

¢ : ina th h th " ile. This has th There are several routes via which this work can be ex-
or grains passing through the entire piie. 1his has e samg, oy gng exploited. A technical study of the properties of
tail as the distribution for trapping times, but is constant for

L : : o ; clustered Lgy random walks formed in higher dimensions
small transit times, i.e., it exhibits an inner scale for short .
nd from a finite number of steps was presented elsewhere

transit times. This behavior is readily understood in terms o 51 A rand Ik with law distributed ber of
the model presented here, since the transit time is the ind 5]. random waik with a power-law distriouted number-o
Steps is novel and warrants further investigation. For ex-

pendent sum of individual trapping times. The characteristi

function of the distribution of the transit times is of the same@MPle, the value of the indeg will affect the rate of con-
form as that in Eq(9) by virtue of infinite divisibility, but ~ vergence to either a Gaussian distribution or other stable dis-

with different parameter, viz. tributions. The properties of such random walks either on the
- line or in higher dimensions is of relevance to the study of
[1+u”(1+iA) a]™Me, macroscopic transport phenomena. Analyzing the flights

made by tracer particles down SOC profiles can provide a
eparadigm for motion through unstable or turbulent media,

scale that a grain experiences before being expelled from th nd thereby elucidate aspects of anomalous transport in com-

pile. This distribution has the same power-law asymptoticp X systems.. At a deeper. Ieyel,'the StOCh"’.‘St'f: processes
form for large values ot as in Eq.(10). The behavior for which creatediscretepower distributions are of intrinsic and

, fundamental interest. The mechanism by which power-law
small values oft depends on the value &l which can be  pepayior is manifested in temporal properties of the pile has
estimated from Eq(6). M is greater than unity for systems peen linked to the classical problem of “first return” of a
of sizeL>40, butMay>1 for system size& >175. Thus stochastic process.

with M the average number of trappings on the long tim

for system sizes greater thanl75, the transit-time distribu- Earlier work produced by a large collective of authors
tion will exhibit an inner scale, and this is verified by the showed how simple cellular automata can reproduce some of
automaton simulations. the effects observed in the evolution of sand piles. Such
work has helped to identify the microscopic mechanisms that

V. SUMMARY AND CONCLUSIONS may play an important but hidden role in determining the

cooperative behavior of complex systems. Adopting a prin-
This paper has applied diagnostics to a rice-pile simulacipally computational approach has not, however, provided
tion. These diagnostics have indicated that the spatial anchuch physical insight into the processes taking place. This
temporal behaviors of tracer grains can be described in termgaper has performed a detailed analysis of the statistics of
of random walk models. Crucially these random walks re-both microscopic transitions and macroscopic changes in a
quire the incorporation of step number fluctuations into theirsand pile. In so doing it has revealed patterns of behavior
formulation. The first model describes the distribution for thewhich are amenable to physical interpretation and for which
resultant flight lengths of grains. This is shown to comprise astochastic models either exist or can be developed. With re-
sum of relatively short subflights whose number fluctuategard to these developments, the discrete power-law distribu-
according to a discrete power law. The index of the powetion provides a potentially fruitful vein for further investiga-
law describing the resultant flight lengths is inherited fromtion. The construction of models describing processes whose
the number fluctuation distribution. The second model deequilibrium or limiting forms have these unusual statistics
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warrants further study, since these processes evidently underhis integral is in a form that is amenable to the analysis
pin the dynamics of SOC behavior at the deepest IEM&].  given in Ref.[11], whereupon the first two terms in the ex-
pansion are readily found to be those given by &in the
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APPENDIX A This appendix derives the distributipEg. (9)] which de-

scribes fluctuations in the random variable
This appendix contains an asymptotic analysis of the spa-

tial random walk for the flight lengths. This requires evalu- N
ation of the PDAEQ. (3)], t:mE:l tm,
— *° Ns
(X)= exp—x) E X where thet,,, are independent but statistically identical one-
{(B)  Ng&=o Ng!(1+Ng)? sided Levy distributed random variables with the character-

istic function
which, with the aid of Stirling’s formula to represehk!,

can be approximated by the integral CL(u)=exp{—|u|[1+isgn(u)A]},
%0 1 foc exdyIn(x)+y—yIn(y)—x]dy andN fluctuates according to the negative binomial distribu-
p(x)= ) : o )
2(B)(2m) 2o y2(1+y)P tion [Eq. (8)]. The average characteristic function that results

from considering all realizations & is

The argument of the exponential function has a single turn- .

ing point aty=x, where the numerator of the integrand at- B N_
tains a maximum value of unity. The value of the integral C(u)—NZO P(N)Cy(u)"=
will therefore be dominated by the behavior of the integrand

in the vicinity of y=x. Expanding the argument of the ex- and the distribution fop(t) follows on Fourier transforming
ponential function to second order about this point leads tnjs. Noting thatC, (—u)=C,(u)* obtains

the approximation

w0
1+ —[1-CL(u)]

—a

1 ©
exd —(y—x)%/2y], p(t)=Re;f duexp(iut)C(u),
0
which possesses the correct behavior ngax whenx is
large. Settingy=(1+u)x and considering>1 obtains which is the distributiof Eq. (12)]. On rescalingu through

u—u/NY7, followed by a scaling int—tN” obtains the

_ distribution [Eq. (12)]; then lettingN—c obtains the limit
-1 (1+u)hri2 distribution[Eq. (9)].

xY2-# fw exp{—xu?/[2(1+u)]}du
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